Partner serwisu
08 marca 2016

Superman może zacząć się bać: jest przepis na (prawie) kryptonit

Kategoria: Z życia branży

Komórka elementarna monotlenku kryptonu jest prostopadłościanem o podstawie rombu, z atomami kryptonu w narożnikach. Dodatkowo pośrodku dwóch naprzeciwległych ścian bocznych znajduje się po jednym atomie kryptonu.

– Gdzie tu tlen? Na tych ściankach bocznych komórki elementarnej, na których mamy pięć atomów kryptonu, są one rozmieszczone podobnie jak kropki liczby 5 w kostce do gry. Pojedyncze atomy tlenu lokują się między atomami kryptonu, ale tylko wzdłuż przekątnej - i to wyłącznie jednej! Zatem na każdej ściance z piątką atomów kryptonu mamy tylko dwa atomy tlenu. Mało tego, tlen nie leży dokładnie na tej przekątnej: jego jeden atom jest od niej nieco odsunięty w jedną stronę, a drugi w drugą – opisuje doktorant Łata.

W tak specyficznej komórce elementarnej każdy atom tlenu wiąże się chemicznie z dwoma najbliższymi atomami kryptonu. Przez kryształ monotlenku kryptonu będą zatem przebiegały zygzakowate łańcuchy Kr/O\Kr\O/Kr, tworzące długie, polimerowe struktury. Obliczenia wskazują, że kryształy takiego monotlenku kryptonu powinny mieć cechy izolatora. Można przypuszczać, że będą miały ciemną barwę i najprawdopodobniej nie będą przezroczyste.

Czterotlenek KrO4
Teoretycy z IChF PAN znaleźli także drugi, nieco mniej stabilny związek kryptonu: jego czterotlenek KrO4. Materiał ten, prawdopodobnie o właściwościach typowych dla metali, ma prostszą budowę krystaliczną i mógłby się tworzyć przy ciśnieniach powyżej 3,4 min atmosfer.

Po uformowaniu, oba rodzaje kryształów tlenków kryptonu prawdopodobnie mogłyby istnieć przy nieco mniejszych ciśnieniach niż wymagane do ich powstania. Ciśnienie ziemskie jest jednak tak niskie, że na naszej planecie kryształy te uległyby natychmiastowemu rozpadowi.

– Reakcje zachodzące przy ekstremalnie dużych ciśnieniach to niemal nieznana, bardzo, bardzo egzotyczna chemia. Mówimy o niej: chemia 'na krawędzi'. Nierzadko ciśnienia potrzebne do przeprowadzenia syntez są tak gigantyczne, że na razie nie ma co próbować wytwarzać ich w laboratoriach. Zawodzą wtedy nawet metody teoretycznego opisu! Ale to właśnie ta nieintuicyjność jest tu najciekawsza: od pierwszego do ostatniego kroku syntezy nigdy nie wiadomo, co się wydarzy – mówi dr Zalewski-Ejgierd - i wraca do komputera, na którym dobiegają końca symulacje kolejnych syntez.

 

Źródło,fot.: IChF PAN

ZAMKNIJ X
Strona używa plików cookies w celu realizacji usług i zgodnie z Polityką Plików Cookies. OK, AKCEPTUJĘ